Package: RGAN 0.1.1

Marcel Neunhoeffer

RGAN: Generative Adversarial Nets (GAN) in R

An easy way to get started with Generative Adversarial Nets (GAN) in R. The GAN algorithm was initially described by Goodfellow et al. 2014 <https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf>. A GAN can be used to learn the joint distribution of complex data by comparison. A GAN consists of two neural networks a Generator and a Discriminator, where the two neural networks play an adversarial minimax game. Built-in GAN models make the training of GANs in R possible in one line and make it easy to experiment with different design choices (e.g. different network architectures, value functions, optimizers). The built-in GAN models work with tabular data (e.g. to produce synthetic data) and image data. Methods to post-process the output of GAN models to enhance the quality of samples are available.

Authors:Marcel Neunhoeffer [aut, cre]

RGAN_0.1.1.tar.gz
RGAN_0.1.1.zip(r-4.5)RGAN_0.1.1.zip(r-4.4)RGAN_0.1.1.zip(r-4.3)
RGAN_0.1.1.tgz(r-4.4-any)RGAN_0.1.1.tgz(r-4.3-any)
RGAN_0.1.1.tar.gz(r-4.5-noble)RGAN_0.1.1.tar.gz(r-4.4-noble)
RGAN_0.1.1.tgz(r-4.4-emscripten)RGAN_0.1.1.tgz(r-4.3-emscripten)
RGAN.pdf |RGAN.html
RGAN/json (API)
NEWS

# Install 'RGAN' in R:
install.packages('RGAN', repos = c('https://mneunhoe.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mneunhoe/rgan/issues

On CRAN:

3.95 score 18 stars 7 scripts 146 downloads 17 exports 42 dependencies

Last updated 1 years agofrom:1b6d0f319f. Checks:ERROR: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesFAILNov 09 2024
R-4.5-winWARNINGNov 09 2024
R-4.5-linuxWARNINGNov 09 2024
R-4.4-winWARNINGNov 09 2024
R-4.4-macWARNINGNov 09 2024
R-4.3-winWARNINGNov 09 2024
R-4.3-macWARNINGNov 09 2024

Exports:data_transformerDCGAN_DiscriminatorDCGAN_GeneratorDiscriminatorexpert_sample_synthetic_datagan_trainerGAN_update_plotGAN_update_plot_imagegan_update_stepGAN_value_fctGeneratorKLWGAN_value_fctsample_synthetic_datasample_toydatatorch_rand_abWGAN_value_fctWGAN_weight_clipper

Dependencies:bitbit64callrclicolorspacecorodescellipsisfansifarverggplot2gluegridExtragtableisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigprocessxpsR6RColorBrewerRcpprlangsafetensorsscalestibbletorchutf8vctrsviridisviridisLitewithr